Scene understanding is crucial for autonomous robots in dynamic environments for making future state predictions, avoiding collisions, and path planning. Camera and LiDAR perception made tremendous progress in recent years, but face limitations under adverse weather conditions. To leverage the full potential of multi-modal sensor suites, radar sensors are essential for safety critical tasks and are already installed in most new vehicles today. In this paper, we address the problem of semantic segmentation of moving objects in radar point clouds to enhance the perception of the environment with another sensor modality. Instead of aggregating multiple scans to densify the point clouds, we propose a novel approach based on the self-attention mechanism to accurately perform sparse, single-scan segmentation. Our approach, called Gaussian Radar Transformer, includes the newly introduced Gaussian transformer layer, which replaces the softmax normalization by a Gaussian function to decouple the contribution of individual points. To tackle the challenge of the transformer to capture long-range dependencies, we propose our attentive up- and downsampling modules to enlarge the receptive field and capture strong spatial relations. We compare our approach to other state-of-the-art methods on the RadarScenes data set and show superior segmentation quality in diverse environments, even without exploiting temporal information.
translated by 谷歌翻译
特征形式的图像补丁的独特表示是许多计算机视觉和机器人任务的关键组成部分,例如图像匹配,图像检索和视觉定位。最先进的描述符,来自手工制作的描述符,例如SIFT到诸如HardNet之类的学习者,通常是高维的; 128个维度甚至更多。维度越高,使用此类描述符的方法的内存消耗和计算时间越大。在本文中,我们研究了多层感知器(MLP),以提取低维但高质量的描述符。我们在无监督,自我监督和监督的设置中彻底分析了我们的方法,并评估了四个代表性描述符的降维结果。我们考虑不同的应用程序,包括视觉定位,补丁验证,图像匹配和检索。实验表明,我们的轻量级MLP比PCA获得了更好的尺寸降低。我们的方法生成的较低维描述符在下游任务中的原始高维描述符,尤其是对于手工制作的任务。该代码将在https://github.com/prbonn/descriptor-dr上找到。
translated by 谷歌翻译
强大而准确的本地化是移动自主系统的基本要求。类似杆状的物体,例如交通标志,杆子和灯,由于其局部独特性和长期稳定性,经常使用地标在城市环境中定位。在本文中,我们基于在线运行并且几乎没有计算需求的几何特征,提出了一种新颖,准确,快速的杆提取方法。我们的方法直接对3D LIDAR扫描生成的范围图像执行所有计算,该图像避免了显式处理3D点云,并为每次扫描启用快速的极点提取。我们进一步使用提取的杆子作为伪标签来训练深层神经网络,以基于图像的极点分割。我们测试了我们的几何和基于学习的极点提取方法,用于在不同的扫描仪,路线和季节性变化的不同数据集上定位。实验结果表明,我们的方法表现优于其他最先进的方法。此外,通过从多个数据集提取的伪极标签增强,我们基于学习的方法可以跨不同的数据集运行,并且与基于几何的方法相比,可以实现更好的本地化结果。我们向公众发布了杆数据集,以评估杆的性能以及我们的方法的实施。
translated by 谷歌翻译
自动驾驶汽车的主要挑战是在看不见的动态环境中导航。将移动对象与静态对象分开对于导航,姿势估计以及了解其他交通参与者在不久的将来可能如何移动至关重要。在这项工作中,我们解决了区分当前移动物体(如行人行人或驾驶汽车)的3D激光雷达点的问题,从非移动物体(如墙壁)中获得的点,但还停放了汽车。我们的方法采用了一系列观察到的激光扫描,并将它们变成素化的稀疏4D点云。我们应用计算有效的稀疏4D旋转来共同提取空间和时间特征,并预测序列中所有点的移动对象置信得分。我们制定了一种退化的地平线策略,使我们能够在线预测移动对象,并根据新观察结果对GO进行预测。我们使用二进制贝叶斯过滤器递归整合了扫描的新预测,从而产生了更强的估计。我们在Semantickitti移动对象细分挑战中评估我们的方法,并显示出比现有方法更准确的预测。由于我们的方法仅在随着时间的推移随时间范围的几何信息上运行,因此它可以很好地概括为新的,看不见的环境,我们在阿波罗数据集中评估了这些环境。
translated by 谷歌翻译
在给定地图中的强大定位是大多数自主机器人的关键组成部分。在本文中,我们解决了在室内环境中定位的问题,该问题在室内环境中发生了变化,而突出结构在不同时间点构建的地图中没有对应关系的问题。为了克服地图与由于这种变化引起的观察到的环境之间的差异,我们利用了人类可读的本地化提示来协助定位。这些提示很容易在大多数设施中获得,并且可以通过使用文本斑点来使用RGB摄像机图像来检测。我们使用在2D激光扫描和相机数据上运行的粒子过滤器将这些线索集成到蒙特卡洛本地化框架中。这样,我们为人类行走具有结构性变化和动态的环境提供了强大的本地化解决方案。我们在办公室环境中评估了有关多个挑战室内场景的本地化框架。实验表明,我们的方法对结构变化具有鲁棒性,并且可以在板载计算机上运行。我们(按照纸质接受)发布了方法的开源实现,该实现使用了现成的文本斑点,并用ROS包装器编写了C ++。
translated by 谷歌翻译
空中图像的语义分割是映射和地球观察的重要工具。但是,对细分的监督深度学习模型依赖大量的高质量标记数据,这是劳动密集型且耗时的生成。为了解决这个问题,我们提出了一种新方法,用于使用无人机(UAV)自主收集有用的模型培训数据。我们利用一种贝叶斯方法来估计语义分割中的模型不确定性。在任务过程中,语义预测和模型不确定性被用作地形映射的输入。管道的一个关键方面是将映射的模型不确定性与基于主动学习的机器人计划目标联系起来。这使我们能够自适应地指导无人机收集最有用的地形图像,该图像被人类标记用于模型培训。我们对现实世界数据的实验评估表明,与静态覆盖路径相比,在最大化模型性能和减少标签工作方面,使用我们的信息计划方法的好处。
translated by 谷歌翻译
了解场景是自主导航车辆的关键,以及在线将周围环境分段为移动和非移动物体的能力是这项任务的中央成分。通常,基于深度学习的方法用于执行移动对象分段(MOS)。然而,这些网络的性能强烈取决于标记培训数据的多样性和数量,可以获得昂贵的信息。在本文中,我们提出了一种自动数据标记管道,用于3D LIDAR数据,以节省广泛的手动标记工作,并通过自动生成标记的训练数据来提高现有的基于学习的MOS系统的性能。我们所提出的方法通过批量处理数据来实现数据。首先利用基于占用的动态对象拆除以粗略地检测可能的动态物体。其次,它提取了提案中的段,并使用卡尔曼滤波器跟踪它们。基于跟踪的轨迹,它标记了实际移动的物体,如驾驶汽车和行人。相反,非移动物体,例如,停放的汽车,灯,道路或建筑物被标记为静态。我们表明,这种方法允许我们高效地标记LIDAR数据,并将我们的结果与其他标签生成方法的结果进行比较。我们还使用自动生成的标签培训深度神经网络,并与在同一数据上的手动标签上接受过的手动标签的培训相比,实现了类似的性能,以及使用我们方法生成的标签的其他数据集时更好的性能。此外,我们使用不同的传感器评估我们在多个数据集上的方法,我们的实验表明我们的方法可以在各种环境中生成标签。
translated by 谷歌翻译
LIDAR数据的实时语义分割对于自动驾驶车辆至关重要,这通常配备有嵌入式平台并具有有限的计算资源。直接在点云上运行的方法使用复杂的空间聚合操作,这非常昂贵,难以优化嵌入式平台。因此,它们不适用于嵌入式系统的实时应用。作为替代方案,基于投影的方法更有效并且可以在嵌入式平台上运行。然而,目前基于最先进的投影的方法不会达到与基于点的方法相同的准确性并使用数百万个参数。因此,我们提出了一种基于投影的方法,称为多尺度交互网络(Minet),这是非常有效和准确的。该网络使用具有不同尺度的多个路径并余额尺度之间的计算资源。尺度之间的额外密集相互作用避免了冗余计算并使网络高效。在准确度,参数数量和运行时,所提出的网络以基于点为基础的基于图像和基于投影的方法。此外,网络处理在嵌入式平台上每秒超过24个扫描,该嵌入式平台高于激光雷达传感器的帧。因此,网络适用于自动车辆。
translated by 谷歌翻译
由于它可能对粮食安全,可持续性,资源利用效率,化学处理的降低以及人类努力和产量的优化,因此,自主机器人在农业中的应用正在越来越受欢迎。有了这一愿景,蓬勃发展的研究项目旨在开发一种适应性的机器人解决方案,用于精确耕作,该解决方案结合了小型自动无人驾驶飞机(UAV)(UAV)的空中调查能力以及由多功能无人驾驶的无人接地车(UGV)执行的针对性干预措施。本文概述了该项目中获得的科学和技术进步和结果。我们引入了多光谱感知算法以及空中和地面系统,用于监测农作物密度,杂草压力,作物氮营养状况,并准确地对杂草进行分类和定位。然后,我们介绍了针对我们在农业环境中机器人身份量身定制的导航和映射系统,以及用于协作映射的模块。我们最终介绍了我们在不同的现场条件和不同农作物中实施和测试的地面干预硬件,软件解决方案以及接口。我们描述了一个真正的用例,在该案例中,无人机与UGV合作以监视该领域并进行选择性喷涂而无需人工干预。
translated by 谷歌翻译
Our dataset provides dense annotations for each scan of all sequences from the KITTI Odometry Benchmark [19]. Here, we show multiple scans aggregated using pose information estimated by a SLAM approach.
translated by 谷歌翻译